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The frequency of judgment effect is a special case of Response Mode effect
in human covariation and causal learning. Judgment adjustment -to DP-,
depends on the trial type preceding that judgment, but that effect is restricted
to situations in which participants are asked to make their judgments with a
high frequency. Two experiments further demonstrated the reliability and the
generality of this effect in positive and negative causal learning tasks.
Experiment 1 yielded similar judgment frequency effects with a higher
positive contingency (DP= 0.71) and a larger block size (n=16) than in
previous studies. Experiment 2 showed that judgment frequency also
modulates the detection of negative contingency (DP= -0.5), as far as
judgment accuracy was shown to be a function of the type of trial just
preceding that judgment in the high frequency group. Associative and
statistical models of covariation learning cannot easily explain these results
without incorporating relevant post-hoc assumptions. These findings add
new-evidence to the growing body of data showing that human causal
learning depends on the action of several mechanisms, as proposed by the
Belief Revision Model.

The ability to detect causal relationships between environmental events
is a major component of adaptive behaviour. Learning that one event is the
cause of another is a basic psychological function, given the causal texture of
our world (Tolman & Brunswick, 1935). For that reason, how people detect
casual relationships has been a central topic in human learning research in the
last two decades (see De Houwer and Beckers, 2002, for a review).

Causal learning allows humans and other organisms to know that two
events are connected by some kind of link or mechanism, in such a way that
the presence or the absence of the cause is consistently followed by the
presence or the absence of the effect. Although not all covariation
relationships are causal in nature, it can be affirmed that causality reveals itself
by means of covariation. Generative causes have the power to produce an
effect, which implies that the presence of the cause is consistently followed by
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the effect. For example, eating seafood makes some people feel sick, and
smoking causes lung cancer. In other words, given a population of instances
there is a certain positive correlation between the presence of the cause and the
presence of the effect. On the other hand, preventative causes have the power
to prevent certain outcomes to occur. In consequence, preventative causes are
consistently followed by the absence of the outcomes they prevent. For
example, people that have been injected a vaccine against flu have a lesser
probability to suffer that disease than people who are not vaccinated. Or, in
covariation terms, in a general population of instances the preventative cause
and the outcome it prevents are inversely related.

In the simplest type of causal learning task, participants are asked to
estimate the degree of covariation between two dichotomous variables whose
values are given by the presence or absence of two discrete events, usually
called cue (the event that appears in the first place in each trial) and outcome
(the event that is presented in the second place). Combining the
presence/absence values of both variables yields four trial types:  in a type
trials, both the cue and the outcome are present; in b type trials, only the cue
appears; in c type trials, only the outcome appears, and, finally, in d type trials,
neither the cue nor the outcome appear. After a series of trials, subjects are
asked to estimate the strength of the correlation or causal relationship between
the cue and the outcome. The objective relationship between cue and outcome,
in relation to which the accuracy of judgments is assessed,  is usually
estimated by mean of DP. This statistic is defined as the difference between
the probability of the outcome given that the cue has been presented P(O/C)
and the probability of the outcome given that the cue has not been presented
P(O/~C),  and it can be estimated from the frequencies of the different types
of trials that are presented during the task, according to the following
equation:

(1)

where a, b, c and d stand for the frequencies of the different types of
trial presented during the task.

Initially, two kinds of models emerged to explain causal and covariation
learning. Statistical models –also called rule-based models- state that the
mechanism underlying covariation and causal learning is a rule or heuristic,
directly computed by the learner from the observed frequencies of trial types
or conditioned probabilities, and whose output is directly mapped onto
contingency / causality judgments. Although different covariation rules have
been proposed, the most frequently cited one is DP. In general, it has been
shown that human causal judgments are rather adjusted to programmed
contingencies (Allan, 1993), which led to propose that humans act in this type
of tasks as intuitive statisticians (Cheng and Novick, 1992, Prices and Yates,
1995).
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The procedural similarities between some conditioning paradigms and
standard causal learning tasks, and the similar results usually found by using
both procedures (see Miller & Matute, 1996, Shanks & Dickinson, 1987) led
some authors to propose the Rescorla-Wagner’s (1972) associative rule as an
alternative explanation of human causality learning (for example, Gluck and
Bower, 1988). The associative mechanism is usually conceptualised as a
single distributed two-layer network. According to the general rule, the
increment of the link weight (dw) between an input unit i (the node
representing the cue) and an output unit j (the node representing the outcome)
in a given trial is a function of the discrepancy between the expected and the
current output in that trial:

(2)

where, wi,j is the matrix of weights from the input layer to the output
layer, l  represents the learning asymptote and, k is a learning rate parameter,
normally related to the perceptual salience of the cue and the outcome.

According to associative models, the strength of the associative link
between the cue and the outcome is directly mapped onto a causal judgment,
denying or ignoring the possible existence of any further inductive or
reasoning process. The importance of these models was increased by their
success at accounting for several effects in causal and contingency judgment
tasks that had been previously found in animal conditioning preparations,
such as acquisition functions (Shanks, 1987), overshadowing, and cue
competition (Chapman and Robbins, 1990, Miller & Matute, 1996 Prices &
Yates, 1995 for reviews). These effects initially showed that an associative
mechanism could account for covariation judgments and causal learning better
than a statistical one. However, further modifications of both associative and
rule-based models made their predictions virtually undistinguishable.

However, other experimental procedures, such as the manipulation of
the way in which the information is provided (for example, summarized
information in contingency Tables) raised doubts about the adequacy of
associative models to fully explain human covariation and causal detection.
Summarized presentations cannot activate an associative mechanism (Catena,
Maldonado, López-Megías & Fresse, 2002, Price and Yates, 1995), which lead
some authors to propose the existence of two independent mechanisms
(Shanks, 1991) to account from the results obtained with summarized and
trial-by-trial presentations. In accord with this proposal, judgments based on
summarized presentations would rely on a statistical computation, whereas
information presented in a trial-by-trial base would activate the associative
mechanism. In fact, associative models appear to be designed to explain the
causality/covariation judgments and learning only exclusively in conditioning-
like (trial-by-trial) procedures.
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In the last decade, findings such as retrospective revaluation, causal
directionality effects, and judgment frequency effects (see De Houwer &
Beckers, 2002) have added new evidence to the growing body of data showing
that human causal learning does not depend exclusively on the operation of a
single associative or statistical rule, but on the integrated operations of several
hierarchically related mechanisms. Some of these effects are still controversial,
and the discussion is now focused on the procedural conditions that make
them appear. In the case of causal directionality effects (see Perales, Catena,
and Maldonado, 2003), the demonstration that their appearance depend on
factors like cognitive load, task demands, or inter-individual differences seems
to reveal that causal learning mechanisms are more complex than considered
to date (DeHouwer and Beckers, 2002).

Results like those previously mentioned make the whole corpus of data
extremely complex, and somewhat contradictory. For that reason, some
theorists have proposed that causal learning arises from the interaction
between basic learning –data driven- mechanisms (either rule based or
associative) and high-order (cognitively driven) mechanisms. Higher inductive
mechanisms (Perales et al., 2003), information-integration mechanisms
(Catena, Maldonado, and Cándido, 1998), and decisional strategies (Collins
and Shanks, 2002) have been proposed to mediate the translation from ‘raw’
contingency to causal knowledge (Cheng, 1997, Waldman, 2000, Waldman
and Martignon, 1998).

Judgment frequency effects represented a defy to single-mechanism
models. Catena, Maldonado, and Cándido (1998) demonstrated that causal
judgment accuracy -assessed by its adjustment to DP- depends on the
frequency of judgment (see also Hastie and Pennington, 1995, Matute, Vegas,
and De Marez, 2002, Vila, 2000, for recent replications of this effect).
Moreover, it was also shown that judgments in high frequency conditions
depends on the type of trial just preceding each judgment. In other words,
when subjects are asked to make a judgment after each trial (maximum
frequency), estimations made after an a type trial are higher than those made
after a b or c type trial. Judgments after d type trials show a higher variability,
but tend to be located in some point of the scale between a and b/c.  This
differential effect of the type of trial on participants’ estimations  was not
initially predicted either by any statistical rule or any model based on the
action of the Rescorla and Wagner rule (1972, see Catena et al, 1998, and
Catena et al., 2002 and the general discussion in the present work for
simulations of these models).

In order to provide an account of these two effects, Catena et al. (1998)
suggested an anchoring-and-adjustment mechanism (Hogarth and Einhorn,
1992), based on the action of two serial algorithms. The first one is proposed
to control judgment actualisation at trial n, being the judgment a function of
the discrepancy between New-Evidence (the information on contingency
accumulated since the last judgment) and the judgment at trial n-k, according
to the following rule:
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(3)

where  J stands for the judgment at trial n (or n-k), k represents the
number of trials presented since the last judgment, ß is a revision rate
parameter, and New-Evidence refers to the amount of information presented
between trial n-k and trial n.

The second algorithm is New-Evidence, which is computed by a
statistical mechanism, according to the following equation (weighted DD):

(4)

where a, b, c, and d  stand for  the frequencies of each type of trial, and
w   j    are the weights of each trial type, taking values restricted to the rule
wa>wb>=wc>wd.

According to this model, the influence of the trial just preceding a
judgment will increase as the frequency of judgment increases (see Catena et
al, 1998, and Catena, Maldonado, López-Megías y Frese, 2002 for
simulations), as it has been repeatedly shown in recent research. However, to
the date, the effect of the last trial upon the subsequent judgment when
increasing its frequency has been only shown with null or moderate positive
contingencies (DP = 0 or 0.5) and with a little number of trials in each block
(n=8). The following experiments were carried out to increase the generality
of such effects (Experiment 1) and, specially, to study how judgment
frequency modulated inhibitory (negative) causal learning in a preventative
causal detection task (Experiment 2).

EXPERIMENT 1
The previously described Last-trial Effect1 (the effect of the trial

immediately preceding a judgment in high-frequency conditions) has been
only demonstrated using blocks with a maximum length of 8 trials. This issue
is relevant because the demonstration of the effect requires at least one trial of
each of the four types of trials per block. Then, the positive contingency was
limited to a maximum of 0.5, as measured by DP, being the block 8-trial long
or shorter. Consequently, it might be argued that this effect is a special case of

                                    
1 In order to simplify the notation, Henceforth, we will refer to the interaction between the
type of trial preceding a judgment and the frequency of judgment as the     Last-trial        Effect   . We
will reserve the term     Frequency        of        Judgment         Effect    to denote the main effect of the
manipulation of the judgment frequency on the global adjustment of judgments to actual
(objective) contingencies.
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bias on the detection of null and low contingencies. If this were the case, the
generality of the effect could be questioned and its theoretical relevance
severely damaged. Therefore, in this experiment we replicate the last-trial
effect using a higher positive contingency (DP= 0.71) and a larger series of
trials in each block (n=16).

METHOD
Participants. Thirty-two undergraduate University of Granada

students from introductory courses of Psychology voluntarily participated in
this experiment for course credits.

Apparatus and stimuli. All stimuli were presented on a high-
resolution SVGA colour monitor controlled by a Pentium PC computer.
Stimuli were verbal labels in different colours standing for a fictitious
symptom (Atrofia) and a fictitious syndrome (Montero). In each trial, the
participants received information about a fictitious patient. Thus, the
combination of the presence/absence values of both events produced four
patient types (trials): a type patients suffered both the symptom and the
disease; b type patients presented the symptom alone; c type patient presented
the disease alone, and d type patients presented neither the symptoms nor the
disease. Covariation judgments (to what degree do the symptom and the
disease tend to appear together?) were made by using a graded scale, ranged
from -100 (Maximum Negative Relationship) to +100 (Maximum Positive
Relationship), being 0 the value labelled as No-Relationship.

Design and procedure. Participants were randomly assigned to two
groups. In the Low Frequency group (LF group), they were asked to make a
judgment after every 16 trial-long block. In the High Frequency group (HF
group), they made a judgment after each trial. 10 type a trials, 1 type b trial, 1
type c trial, and 4 type d trials were included in each training block. Within-
block contingency was always fixed at 0.71, as measured by DP. The trial
sequence in each block was randomised for each participant of each group
(but yoked across groups), with the only restriction that the last trial of each
block was fixed according to an incomplete counterbalancing sequence. Thus,
the ultimate trial of each of the four blocks followed the sequence [a, b, d, c] in
the first sub-group, and [b, c, a, d], [c, d, b, a], and [d, a, c, b], in the other three.

According to this procedure, two different designs can be defined over
the same data. In both cases, the frequency of judgment (HF vs LF) was a
between-subject factor. The within-subject factor was, in the first type of
design, the order in which participant made their judgments across the task
(after trials 16, 32, 48 and 64, being the type of trial counterbalanced).
Hereafter, we will refer to this factorisation as the Block Design. Alternatively,
we can reorder the judgments with regard to the last trial type (a, b, c and d) in
each block, being the actual judgment order counterbalanced. We will refer to
this design as the Last-trial type Design. The Block design is aimed at
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ascertaining whether acquisition effects are observed  across the task, as it
tracks judgments down in the same order they are made, after each block of
16 trials. The Last-trial type Design counterbalances the potential effect of
acquisition, and focuses on the effect of the trial type preceding a judgment on
that same judgment. It is important to note that, when we focus on acquisition
effects, the effect of the trial preceding a judgment is counterbalanced; and,
when we focus on the effect of the trial preceding a judgment, the possible
acquisition effect remains counterbalanced and unobservable. Therefore the
effect of the two factors can not be studied simultaneously.

Before the onset of the task, each participant was seated at a distance of
60 cm from the monitor, where instructions and stimuli were presented. They
were instructed to imaging being members of a research team interested in
studying the relationship between a symptom and a disease. Once the
instructions were presented and adequately understood, the information about
each patient was presented in a trial-by-trial  way.  In each trial, a label
indicating the presence or absence of the symptom was presented, and 500 ms
later a second label indicated the presence or absence of the disease. The
second label (or its absence) was presented besides the first label (or its
absence) on the same screen during 1500 ms, which means that  the whole
trial lasted for 2 s. During the pre-training stage, eight practice trials (two of
each type) with a different symptom and a different syndrome (Distonia and
Cajal) were presented, followed by the response scale. After the experimenter
was sure the participant had understood the task, he or she was told that the
experimental task was going to begin. Their task was to estimate the strength
of the relationship between the symptom and the disease after a given number
of patients (16 in the LF group, and 1 in the HF group), whenever the
response scale appeared. To this end, participants were instructed to move the
cursor of the response scale to the point that best indicated their estimate of
the strength of the relationship between the symptom and the disease,
considering all the patients seen up to that moment. At the end of the session,
participants were thanked for their participation, and informed about the aim
of the study (on demand).

RESULTS AND DISCUSSION
The main results of this experiment are displayed in Table 1. Two

different ANOVA’s were performed according to the two experimental
designs previously described. In the Block Design, the 2x4 ANOVA (Group x
Block of trials) yielded only a significant main effect of Group, F (1 ,30) =
5.48, MSE=2209, p<.05. Judgments were higher and more adjusted to the
programmed contingency in the LF than in the HF group (M=72.75, and
52.29, respectively, see Table 1). This result demonstrated a main Frequency
of Judgment Effect (see note 1), as judgment adjustment to the objective
contingency, as defined by DP, was an inverse function of the frequency of
judgment. As far as there were no block effects, this design did not reveal any
clear acquisition effect.
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 Nevertheless, the most interesting finding was revealed by the analysis
of the Last-trial Design (see Table 1). The 2x4 ANOVA (Group x Last Trial
Type in each block) yielded the same Group effect found in the previous
design. However, in this second analysis the interaction between Groups and
the Last trial type was also significant, F(3,90)=3,68, MSE=585.09, p<.05 .
This is the effect we have denoted as the Last-trial Effect (although, in fact, it
is an interaction between the two manipulated factors (see footnote 1).

Table 1. Judgments for High (HF) and Low (LF) frequency groups
according to the last trial of each block in experiments 1 and 2 and
simulations of Markman associative model and the belief revision
model (BRM).

Condition                      Type of Trial
EXPERIMENT  1

JUDGMENTS a b c d mean
LF +.70 70 77 70 73 73
HF +.70 71 44 39 59 53
MARKMAN a b c d mean RMSE
LF +.70 34 36 21 31 31 48.9
HF +.70 37 26 29 41 33 29.6
BRM a b c d mean RMSE
LF +.70 62 62 62 62 62 12.7
HF +.70 68 51 51 67 59 8.9

EXPERIMENT  2
JUDGMENTS a b c d mean
LF -.50 -27 -29 -30 -23 -27
HF -.50 -13 -35 -41 -43 -33
MARKMAN a b c d mean RMSE
LF -.50 -25 -21 -28 -14 -22 7.5
HF -.50 -8 -25 -30 -14 -20 19.2
BRM a b c d mean RMSE
LF -.50 -25 -25 -25 -25 -25 3.8
HF -.50 -6 -36 -36 -17 -24 15.9

Note: Each simulation was run sixteen times, trials sequences being the same used in the
experiments and mean values rounded to the nearest integer. In the BRM model, the trials
weights were the same of previous studies (Catena et al., 1998, 2002): wa = 100; wb = -70;
wc = -70; wd = 60, being b = 0.2 and b = 0.9 for HF and LF condition, respectively.
Learning rates in the Markman model were: HF a = 0.2; LF a  = 0.001. for the cue and a
= 0.1 for the context in both conditions. RMSE was the root mean square error of
prediction.
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Post-hoc simple effects analyses of this interaction showed significant
differences among judgments only in the High Frequency group,
F(3,45)=3.23, MSE= 1083.82, p<.05.  LSD post-hoc tests showed that
judgments after an a type trial in the High Frequency group were significantly
higher than after any other type of trials. No other differences were
significant. Secondly, post-hoc between-groups analyses revealed also that LF
group judgments were higher than those of the HF group after b and c type
trials, F(1,30)= 6.77, MSE=1311.81, p<.05,  and F(1,30)=4.61,
MSE=1734.19,  p<.05, respectively. Judgments after a and d trials did not
differ across groups.

In summary, causal judgments were rather adjusted  to the programmed
contingency and independent of the type of last trial in the low frequency
group. In the high frequency group, judgments were significantly less
accurate, especially after b and c type trials, being these judgments more
sensible to the trial type preceding the judgment than to the actual contingency
between events.  These results replicated previous findings on the detection of
lower positive causal relationships (Catena et al, 1998; Catena et al., 2002),
and showed that the Last-trial effect is a general phenomenon. The next
experiment aimed to study how the frequency of judgment modulated also the
detection of negative causal relationships.

EXPERIMENT 2
In this experiment, two different procedures of negative contingency

learning were used. In the single negative contingency procedure, one
fictitious symptom (X) was negatively correlated with a fictitious disease. The
second procedure was intended to be similar to the one commonly used to
study inhibitory conditioning, as associative models maintain that inhibitory
learning requires the simultaneous presence of an excitatory stimulus in the
same context (Chapman and Robbins, 1990, Williams, 1996). Accordingly,
two fictitious symptoms (X and Y) and the same fictitious disease were used
in the inhibitory procedure. In order to establish the negative contingency level
of the X cue, the four types of trial in this condition were: YX-syndrome (type
a); YX-no syndrome (type b); Y-syndrome (type c) and Y-no syndrome (type
d). Note that in this second inhibitory learning procedure Y is present in all
trials, and, therefore, it plays the role of a contextual cue that has been made
salient. The participants' task was to estimate the strength of the negative
relationships established between symptom X and the disease. In both
procedures, a high and a low frequency condition were used (HF and LF
groups, as described in the first experiment) to study the effect of the
judgment frequency on the detection of negative causal relationships.
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METHOD
Subjects, stimuli and apparatus. Sixty-four undergraduate students

from introductory courses of Psychology participated for course credits.
Stimuli and apparatus were the same used in Experiment 1, with the addition
of a new symptom (Y, Disforia) in the inhibitory procedure, as explained
above.

Design and procedure. Instructions, practice trials, number of blocks,
counterbalancing sequences, trial sequences and judgment recording,
remained as described in Experiment 1. In addition, each participant was
randomly assigned to one of the next four groups. Participants in the Low
Frequency- Single Negative Contingency (LF-X) and Low Frequency-
Inhibitory Learning (LF-YX) groups were asked to make a judgment after
every block of sixteen trials. In the High Frequency-Negative Contingency
(HF-X) and High Frequency-Inhibitory Learning (HF-YX) groups, they were
asked to make a judgment after each trial. In the LF-YX and HF-YX groups
the X symptom was negatively related with the disease, whereas Y-Outcome
contingency was not calculable, as Y was presented in every trial during the
task and the outcome appeared in half of these trials.  Each block consisted of
2 a type trials, 6 b type trials , 6 c type trials , and 2 d type trials (in the two YX
groups, the trials were : 2 YX-disease, 6 YX -no disease, 6 Y-disease, and  2 Y-
no disease). Objective contingency for X was fixed at -0.5, as measured by DP
(2/8-6/8) in all conditions. Only judgments on the target cue X were required.

RESULTS AND DISCUSSION
As in the previous experiment, two ANOVAs were performed according

to the type of experimental design previously described. In the Block Design,
the 2x2x4 ANOVA (Type of negative contingency procedure x Group x
Block of trials) did not reveal any significant effect. Judgments were equally
poorly adjusted to the objective contingency in both conditions (means of -27
and -33, in the LF and HF conditions, respectively). This result replicated
previous findings (Maldonado, Catena, Cándido, and García, 1999) suggesting
that the detection of negative contingencies is more difficult than the positive
equivalent ones, when only one cause and one effect appear during the task2. .

                                    
2 This poor detection of negative contingencies has been previously reported in several
inter-event causal and contingency learning studies (see Maldonado et al., 1999). For
example, in the study on conditioned inhibition by Chapman and Robbins (1999,
Experiment 2) judgments about the inhibitory cue and the negatively correlated control cue
(scores around -.70 and -.50 respectively) were less adjusted than those about the positive
one (score higher than +90), although both cues were perfect (deterministic) inhibitory
predictors of the outcome. However, there are also reports in which the adjustment of
negative contingency judgments (or other measures of covariation learning) are as good  as
positive ones. In general terms, this happens in instrumental tasks where learners are asked
to judge the relationship between a response (for example, pressing a key) and a given
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According to the Last-trial Design, a second 2x2x4 ANOVA (Type of
negative contingency procedure x Frequency of judgment x Type of last trial)
was performed in order to replicate the Last-trial Effect found in the previous
experiment. This analysis yielded only a significant effect for the first order
interaction between the frequency of judgment and the type of trial,
F(3,180=2.68, MSE=2049.01, p<.05.  Simple effects analysis of this
interaction showed, as in the previous experiment, significant differences
among judgments only in the High Frequency groups, F(3,93)=3.03,
MSE=1987.13, p<.05. Post hoc LSD tests revealed that judgments after a
type trials were significantly higher than those after b, c, or d type of trials. No
other difference was significant.

These results revealed, firstly, an absence of significant differences
between the single negative contingency and the inhibitory procedures in the
detection of causal negative relationships, contrarily to what has been reported
by Chapman and Robbins (1990). It is possible that these differences could
be attributed to procedural differences. We used the explicit symptom (Y) to
simulate the possible role of the context and, consequently, it was present in
every trial during the inhibitory procedure. Therefore, if the context accounts
for the conditioned inhibition effect in a negative contingency task, it was
expected that there were no differences between the two procedures used in
this experiment. In any case, this remains an open question for future research
(see Van Hamme and Wasserman, 1994, and Perales and Shanks, 2003, for
discussions on the potential role of instructions in determining the role of the
context in causal learning).

Secondly, there were no significant between-groups differences in the
detection of negative contingencies, when using a Block Design, being
judgment adjustment to the objective contingency poorer than in the positive
contingency task. In other words, there was not a main Judgment Frequency
effect equivalent to the one found in positive contingencies. These results are
in agreement with previous findings about the asymmetrical detection of
positive and negative contingencies in causal detection tasks (Maldonado et al,
1999).

Finally, the most important finding was the dependence of judgments
on the last trial type in HF groups, but not in LF ones. This result replicates
the Last-trial effect found in positive contingency learning tasks. However it is
also important to note that in this case, the effect was exclusively due to the
influence of a type trials, whereas in positive contingency tasks it was due to b
and c  ones (see LSD post-hoc comparisons).  We will discuss the possible
implications of this difference in the next section.

                                                                                            
outcome (Chatlosh, Neunaber & Wasserman, 1985, Wasserman, 1990, Shanks &
Dickinson, 1987, see Shanks, 1993, for a review). Our tentative hypothesis to account for
this discrepancy is that these procedures makes the absence of the outcome more salient, in
such a way that learners codify such absence as a positive effect.
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GENERAL DISCUSSION
Two main new findings have been shown in this work. First, a

Frequency of Judgment (HF vs LF) effect was found in generative causal
learning tasks –in agreement with previous reports-, but not in preventative
ones. In the detection of positive causal relationships, a higher response
frequency led to a poorer adjustment of mean judgments to objective
contingencies, whereas judgments in the low frequency condition were highly
accurate (Experiment 1). This differential Judgment Frequency Effect
disappeared when estimating negative causal relationships, as high- and low-
frequency judgments were equally poorly adjusted to the objective
contingency (Experiment 2). This set of results suggests an asymmetrical
effect of positive and negative contingency detection, as also showed by
previous research (Maldonado et al., 1999). This asymmetry is probably due
to a general increase of task difficulty and cognitive load in the detection of
negative relationships (Maldonado, Herrera, Jiménez, Perales & Catena,
2003).

The second and most noteworthy finding was the Last-trial effect, that
is, the fact that judgment frequency modulated the effect of the type of trial
just preceding a judgment in both preventative and generative HF causal
learning tasks (according to the general restriction wa>wb>=wc>wd). In terms
of adjustment to programmed contingencies, judgments were less accurate
after b and c type trials than after a and d ones, when estimating high positive
contingencies (Experiment 1). This effect was similar to the previously found
with moderate positive contingencies (Catena et al., 1998). Conversely,
judgments were less accurate after a type trials than after b, c and d ones,
when estimating negative contingencies (Experiment 2), being these results
much similar to those previously found in the detection of null contingencies.
The sign of the influence of d type trials appears to be more similar to that of
a type trials in positive and the null contingency cases, and to b and c type
trials in the negative one, probably due to the greater difficulty for the subjects
to adequately process the influence of these type of trials when estimating
causal relationships (see Maldonado et al, 1999). However, it has been
consistenly demonstrated that the interpretation of d type trials is not always
clear for naïve learners, in such a way that some of them evaluate them as
confirmatory, others as disconfirmatory, and even others do not take them into
account when evaluating causal strength (White, 1998)

This pattern of results raises doubts about the adequacy of single-
mechanism models to fully account for causal learning. On the one hand, the
main problem for statistical (rule-based) models is that they do not consider
any direct of interactive effect of  response frequency manipulations, given
that subjects are expected to compute the global contingency (independently
of the rule they use) every time they are asked to make a judgment (see Catena
et al., 2002, for simulations of such potential models).

On the other hand, traditional associative models as Rescorla and
Wagner’s (1972) are unable to explain why the effect of the trial type
preceding a judgment differs in HF and LF groups (see simulations in Catena
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et al, 1998). However, more recent models have suggested modifications of
the Rescorla-Wagner rule to better account for learning on a cue in trials in
which that cue is absent3.. According to these proposals, learning about an
absent cue can occur, if that cue is predicted by another one or expected in that
context, for example, by influence of instructions (Markman, 1989, Van
Hamme & Wasserman, 1994). Both Markman’s and Van Hamme-
Wasserman’s models allow to negatively codify an absent-expected cue, just
assigning a negative value to the salience parameter of that cue. The
mathematical formulation of both models is in all other aspects equivalent to
the LMS rule proposed by Rescorla and Wagner (1972). The only difference
between the two modified algorithms is that Markman’s formulation updates
the weights of associative links using the input in the current trial, whereas van
Hamme and Wasserman’s model use the network weights of the previous
trial for updating. This is important because, due to this difference, the
assymptotic predictions of the two models differ. Moreover, in the case of
Van Hamme and Wasserman’s model, when more than one cue are included
in the simulations (as it happens when considering the context) the obtained
predictions can easily go beyond the theoretical assymptote, which means that
the model is mathematically less usefull (Perales & Shanks, 2003).

For that reason, we have used the associative algorithm proposed by
Markman to simulate the results of the two experiments (see Perales and
Shanks, 2003, for a simplified procedure to obtain asymptotic predictions
from Van Hamme and Wasserman’s model). This algorithm can explain both
the absence of differences between the single and the conditioning-like
procedure (reported here) and its presence (reported in other works, Chapman
and Robbins, 1990), depending on the assumptions made about how the
influence of the context is to be taken into account. The context can be
                                    
3 The R-W rules accounts for inhibitory learning in an indirect way. According to that
model, the context recruits associative strength in those trials in which the target cue is
absent, competing with it for the total amount of available strength. Therefore, in
inhibitory learning procedures, if the context accumulates associative strength in those
trials in which the target cue is absent, and, in a subsequent trial in which the target cue is
present the outcome does not appear, the difference between the expected and the actual
value of the outcome is negative, thus yielding a decrement of the associative strength
attributed to the target cue. In the case of modifications of the RW rule like Markman’s or
Van-Hamme and Wasserman’s, the mechanism works in a different manner: If a cue is
expected in a given trial (due to its association to the context of other cues) it is negatively
activated in that trial (the parameter associated to its salience is assigned a negative value).
Thus, if in a given trial that cue is absent (expected) and the outcome is present, the
associative strength attributed to that cue decreases. The main difference between R-W and
its modified versions is the moment in which    b    and    d    trials affect causal learning.
According to R-W, b and d trials do not have an immediate effect, but in subsequent trials
in which the target cue is presented and compete with the context for the limited amount of
associative strength. In other words, no learning about a cue occurs in trials in which that
cue is absent. However, according to modified versions of R-W, the inhibitory effect on the
associative strength attributed to a cue, in those trials in which the target cue is absent (b
and d) is immediate. This can account, for example, for revaluation effects as backward
blocking (Shanks, 1985).
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codified as an extra cue, and thus recruit associative strength by itself, and/or
can be considered as the reason why the absence of the target cue is expected
in those trials in which it is actually absent. Given the observed results, we
have assumed, first, that the context must be codified as an extra cue; and
second, that it has the power to trigger the expectation of the target cue when it
is absent (thus making possible its negative codification). Under these
assumptions, an absent target cue will be similarly expected in both types of
inhibitory procedures in this experiment, either by the presence of the context
(X alone procedure) or by the explicit cue Y (YX design) given that this cue is
always present. This assumptions makes the two procedures virtually
equivalent.

How the influence of the context has to be codified remains a matter of
debate in human and animal learning literature, and, probably, it is procedure-
dependent. Then, it is possible that the procedural differences between
Chapman and Robbins’ (1990) experiments and this work could also explain
the different obtained results. Among others differences, they used a within
subjects design, making it possible a direct subjective comparison between the
two types of inhibitory cues (accompanied or not by a predictive cue) and, at
the same time, their procedure made the explicit cue and the context clearly
differentiable.

Table 1 displays the product of simulating Markman’s model, being the
parameters also reported. Predictions from Markman’s revised R-W rule
qualitatively account for the Last-trial Effect both in the positive and the
negative contingency task, although the quantitative fit is much better for the
belief revision model, as previously reported (Catena et al., 2002). Moreover,
Markman’s model does not account for the main Response Mode effect
found in the detection of positive relationships, as the predicted judgment
means are similar in both frequency conditions. The belief revision model
predicts the trend shown by Frequency of Judgment Effect in the detection of
generative causal relationships, and the absence of this effect and the global
lower accuracy observed in preventative conditions. The better adjustment of
BRM is clear, although the actual difference observed between the HF and the
LF group in the positive contingency task is larger than the one predicted by
BRM. Note that the superiority of the proposed model appears under the self-
restriction of using the same parameters that have been used in previous
works.

Besides its empirical flaws, Markman’s rule has also the theoretical
limitation that it requires selecting different parameter sets for high- and low-
frequency tasks, in order to be able to account for the observed data pattern. In
this model, both qualitative and quantitative predictions are extremely sensible
to the selected set of parameters. The salience parameter for the negative cue
(Y) need to be close to 0 (a= 0.001) to account for the actual data pattern in
the high frequency condition. This value theoretically implies almost the
absence of learning about that cue, and that all the observed effects should be
attributed to the context or the explicit cue influence. Finally, the quantitative
fit for Markman’s model predictions is always lower than for the belief
revision model. The RMSE value (Root Mean Square Error) reported in Table
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1 assesses the quantitative adjustment of each model to the observed data
pattern. It is also important to note that that the set of parameters of the belief
revision model is hold constant in all conditions, and is the same that has been
used in previous studies (Catena et al., 1998, Catena et al., 2002).

Catena et al (1998) proposed that causal and covariation learning is
based on the action of two serial mechanisms. Each time a judgment is
required, the information-computing mechanism (New-Evidence, Equation 4)
comes into play, and computes the degree of covariation between the cue and
the outcome observed since the last judgment, by using the frequencies of the
four trial types that have been stored in the working memory during the task.
The information summarized by this mechanism then enters the information-
integrating mechanism, which updates the last judgment in accord to that input
(Equation 3), resetting the first mechanism and the working memory to
compute the New-Evidence again. This last judgment is transferred to and
updated in the reference memory, where it is stored to be retrieved when
necessary.  All this process is summarized in Figure 1.

The Belief Revision model can explain, not only the influence of the last
trial in the high frequency condition, but also why this effect is dependent on
the actual contingency, be it positive, null or negative. Table 1 shows the
predictions of this model for the two experiments reported in this work. It is
important to note that given the higher and positive weights always assigned to
a type trials, this model is able to predict the lack of accuracy and higher
difficulty of subjects detecting negative contingencies. However, in the case of
the influence of d type trials, the predictions of the model are less accurate,
perhaps due to the intrinsic variability usually found in the interpretation of
this type of trials (White, 1998, see also Maldonado et al, 1999).  In any case,
the model predictions are always more accurate than the predictions from any
other model (see RMSE in Table 1).

Concluding Remarks
The  effects of judgment frequency manipulation on the detection of

generative and preventative causal relationships emphasise the need of
postulating several integrated mechanism to account for human causal
learning  (Waldman and Martignon, 1998). Associative models, including the
recently proposed reformulated SOP model (Dickinson et al., 2001), need to
make additional assumptions to account for these effects,  such as the
possibility of computation of an absent cue (Markman, 1989). Moreover, it is
necessary to explain why the set of parameters changes from task to task. As
shown by the simulations reported in Table 1 there is not a single set of
parameters with which Markman’s model is able to account for the whole
pattern of data. To date, the change of parameters has not been based on
theoretical grounds, which, eventually, multiplies the number of parameters
actually assumed by the model. Conversely, the belief revision model is able
to accurately account for the data obtained in this and previous works by
using a single set of parameters.
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Figure 1. The serial two-mechanisms cognitive architecture proposed
by the Belief Revision Model (Catena et al, 1998) to account for
human causal and covariation learning.  

The belief revision model (see Figure 1) proposes a cognitively
coherent and parsimonious set of mechanisms to account for causal and
covariation learning. The lower-level algorithm is proposed to compute partial
covariation from the information stored in the working memory since the last
estimation (New-Evidence). The higher-level algorithm updates previous
estimations by using the information provided by the lower-level mechanism.
It is also tentatively proposed that this high-order integration mechanism
could have broader functions as a mechanism that makes possible the
interaction among several sources of information such as instructions and
experience with the task (Maldonado et al, 1999), causal mental models and
previous beliefs (Perales, Catena, and Maldonado, 2003, Waldman and
Martignon, 1998), attentional and executive demands (Maldonado et al, 2003),
and emotional and motivational factors (for example, incentives value, see
Reed, 1994).
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RESUMEN
Efecto de la frecuencia de juicio en el aprendizaje de
relaciones causales generativas y preventivas. El efecto de la
frecuencia de juicio es un caso especial del modo de respuesta en el
aprendizaje humano de relaciones causales y de covariación, con el que se
muestra que el ajuste de los juicios  -a DP-, depende  del tipo de ensayo
previo al juicio, aunque este efecto sólo ocurre cuando la frecuencia del juicio
es alta. En dos experimentos se demostró la fiabilidad y generalidad de dicho
efecto en tareas de aprendizaje de relaciones causales generativas y
preventivas. El primer experimento demostró ese mismo efecto, con un
mayor número de ensayo (16)  y un mayor grado de contingencia positiva
(DP= 0.71) que en estudios previos. El Experimento 2 demostró que la
frecuencia del juicio modula también la detección de relaciones de
contingencia negativas  (DP= -0.5), dado que el ajuste a dicha contingencia
dependía del tipo de ensayo precedente en condiciones de alta frecuencia del
juicio. Los modelos basados en la acción de un único mecanismo, sea
asociativo o estadístico, no pueden explicar fácilmente estos resultados sin
incorporar nuevos supuestos. Por tanto, estos resultados aportan nueva
evidencia experimental al cuerpo de datos que sugieren que el aprendizaje de
relaciones causales en humanos depende de la acción  integrada de diferentes
mecanismos, como propone el modelo de revisión de creencias.
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